Ordinary Least Squares
Ordinary Least Squares (OLS) is a linear regression method, and is effectively synonymous with the linear regression model.
Description
A linear model is expressed as either (univariate) or
(multivariate with k terms). Either way, a crucial assumption is that the expected value of the error term is 0, such that the first moment is E[yi|xi] = α + βxi.
Univariate
In the univariate case, the OLS regression is:
This formulation leaves the components explicit: the y-intercept term is the mean outcome at x=0, and the slope term is marginal change to the outcome per a unit change in x.
The derivation can be seen here.
Multivariate
In the multivariate case, the regression is fit like:
But conventionally, multivariate OLS is solved using linear algebra as:
Note that using a b here is intentional.
The derivation can be seen here.
Estimated Coefficients
The Gauss-Markov theorem demonstrates that (with some assumptions) the OLS estimations are the best linear unbiased estimators (BLUE) for the regression coefficients. The assumptions are:
- Linearity
- Exogeneity, i.e. predictors are independent of the outcome and the error term
- Random sampling
No perfect multicolinearity
- Homoskedasticity, i.e. error terms are constant across observations
#5 mostly comes into the estimation of standard errors, and there are alternative estimators that are robust to heteroskedasticity.