Stata predict

predict is a post-estimation command that calculates predicted probabilities.


Usage

To obtain the predicted outcome propensity from a logistic model, try:

. webuse nhanes2

. gen goodhealth = inrange(hlthstat,1,3)

. logistic goodhealth i.agegrp i.sex weight

Logistic regression                                    Number of obs =  10,351
                                                       LR chi2(7)    = 1132.40
                                                       Prob > chi2   =  0.0000
Log likelihood = -5056.9403                            Pseudo R2     =  0.1007

------------------------------------------------------------------------------
  goodhealth | Odds ratio   Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
      agegrp |
      30–39  |   .7793651   .0902187    -2.15   0.031     .6211643    .9778571
      40–49  |   .3560292   .0380841    -9.65   0.000      .288691    .4390742
      50–59  |   .2226468   .0225284   -14.85   0.000     .1825947    .2714844
      60–69  |   .1394634   .0122928   -22.35   0.000     .1173362    .1657633
        70+  |    .104361    .010635   -22.18   0.000     .0854664    .1274327
             |
         sex |
     Female  |   .8600342   .0451549    -2.87   0.004     .7759337    .9532501
      weight |   .9929544   .0017037    -4.12   0.000     .9896208    .9962992
       _cons |   21.95965   3.387447    20.03   0.000     16.23009    29.71186
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.

. predict propensity, pr

. mean propensity, over(strata)

Mean estimation                                Number of obs = 10,351

---------------------------------------------------------------------
                    |       Mean   Std. err.     [95% conf. interval]
--------------------+------------------------------------------------
c.propensity@strata |
                 1  |   .7425612   .0069563      .7289254     .756197
                 2  |   .7738034     .01002      .7541622    .7934446
                 3  |   .7501458   .0071763      .7360789    .7642126
                 4  |   .7842088   .0063844      .7716941    .7967236
                 5  |   .7810146   .0084046        .76454    .7974892
                 6  |   .7666114    .007752      .7514159    .7818069
                 7  |   .7350987   .0062277      .7228913    .7473061
                 8  |   .7491121   .0075689      .7342755    .7639487
                 9  |   .7983793   .0081168      .7824689    .8142897
                10  |   .7807851    .008437       .764247    .7973231
                11  |   .7720709   .0079622      .7564634    .7876784
                12  |   .7804427    .007765      .7652219    .7956636
                13  |    .766857   .0072942      .7525591     .781155
                14  |   .7760337   .0066241      .7630492    .7890181
                15  |   .7515905   .0068979      .7380693    .7651116
                16  |   .7879491   .0072613      .7737155    .8021827
                17  |   .7700296   .0065947      .7571028    .7829564
                18  |   .7512391   .0070538      .7374124    .7650659
                20  |   .7732079   .0080411      .7574459      .78897
                21  |    .765017   .0091615      .7470587    .7829753
                22  |   .7578301    .007664      .7428073     .772853
                23  |    .784183   .0073184      .7698376    .7985285
                24  |   .7476354   .0065429      .7348101    .7604606
                25  |   .7650576    .008138      .7491056    .7810097
                26  |   .7680721   .0084251      .7515573    .7845869
                27  |   .7783377   .0081194      .7624221    .7942533
                28  |   .7741337   .0081387      .7581803    .7900871
                29  |   .7287702   .0061495      .7167159    .7408244
                30  |   .7629903   .0068803      .7495037    .7764769
                31  |   .7853215   .0078016      .7700289    .8006141
                32  |   .8055108   .0065239      .7927226     .818299
---------------------------------------------------------------------

This can also be used to generate out-of-sample predicted propensities.

. sample 30
(7,246 observations deleted)

. logistic goodhealth i.agegrp i.sex weight
[snip]

. clear

. webuse nhanes2

. predict propensity, pr

. mean propensity, over(strata)

Mean estimation                                Number of obs = 10,351

---------------------------------------------------------------------
                    |       Mean   Std. err.     [95% conf. interval]
--------------------+------------------------------------------------
c.propensity@strata |
                 1  |    .746138   .0069755      .7324646    .7598114
                 2  |    .777912   .0100163      .7582781     .797546
                 3  |   .7535636   .0071896      .7394706    .7676566
                 4  |   .7876387   .0063554      .7751809    .8000965
                 5  |    .783574   .0083246      .7672562    .7998919
                 6  |   .7702981     .00772      .7551653    .7854308
                 7  |   .7386229    .006259      .7263541    .7508918
                 8  |   .7525448   .0075756      .7376952    .7673943
                 9  |   .8018701   .0080247      .7861401    .8176002
                10  |   .7841906   .0084246      .7676768    .8007044
                11  |   .7752522   .0079553      .7596582    .7908461
                12  |    .783474   .0077902      .7682037    .7987444
                13  |   .7702269   .0072267      .7560612    .7843925
                14  |   .7799459   .0065436      .7671192    .7927726
                15  |   .7551355    .006916      .7415788    .7686922
                16  |   .7911832   .0072553      .7769613     .805405
                17  |   .7745866   .0065169      .7618122     .787361
                18  |    .755422   .0070323      .7416373    .7692067
                20  |   .7769737   .0080169      .7612591    .7926883
                21  |   .7683972   .0091782      .7504062    .7863882
                22  |   .7622266     .00758      .7473683     .777085
                23  |   .7876735   .0073226      .7733199    .8020272
                24  |   .7515857   .0065253      .7387948    .7643765
                25  |   .7694184   .0081019      .7535371    .7852996
                26  |   .7710772   .0084184      .7545756    .7875788
                27  |   .7820861   .0080883      .7662315    .7979407
                28  |   .7769497   .0082211      .7608347    .7930646
                29  |   .7323046    .006182      .7201866    .7444226
                30  |   .7661599   .0068439      .7527445    .7795753
                31  |   .7889444     .00777      .7737137    .8041751
                32  |   .8079336   .0065227      .7951478    .8207193
---------------------------------------------------------------------

To obtain the predicted probabilities of each outcome from a mlogit or ologit model, try:

. use https://www3.nd.edu/~rwilliam/statafiles/mroz.dta

. ologit lfstatus kidslt6 kidsge6 age educ exper nwifeinc
[snip]

. predict lfstatus_pr1, pr outcome(0)

. predict lfstatus_pr1, pr outcome(1)

. predict lfstatus_pr2, pr outcome(2)


See also

Stata manual for predict


CategoryRicottone

Stata/Predict (last edited 2025-04-04 02:56:21 by DominicRicottone)