Stata mlogit

The mlogit command fits a multinomial logit model.


Usage

In terms of syntax and reading output, mlogit is very similar to logit. Naturally, when the dependent variable is categorical rather than binary, the mlogit command should be used instead.

The key is to recognize whether mlogit or ologit is more appropriate. Even when there is a natural ordering to the categories, ologit may not be a superior model. As an example, adapted from https://www.statalist.org/forums/forum/general-stata-discussion/general/1653984-ordinal-or-multinomial-regression?p=1654012#post1654012:

. use https://www3.nd.edu/~rwilliam/statafiles/mroz.dta

. gen lfstatus = cond(hours==0, 0, cond(inrange(hours,1,1249), 1, 2))

. label define lfstatus 0 "non-participation" 1 "part-time work" 2 "full-time work"

. label values lfstatus lfstatus

. mlogit lfstatus kidslt6 kidsge6 age educ exper nwifeinc

Iteration 0:   log likelihood = -809.85106  
Iteration 1:   log likelihood = -682.09452  
Iteration 2:   log likelihood = -676.45369  
Iteration 3:   log likelihood = -676.35678  
Iteration 4:   log likelihood = -676.35676  

Multinomial logistic regression                         Number of obs =    753
                                                        LR chi2(12)   = 266.99
                                                        Prob > chi2   = 0.0000
Log likelihood = -676.35676                             Pseudo R2     = 0.1648

-----------------------------------------------------------------------------------
         lfstatus | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
------------------+----------------------------------------------------------------
non_participation |  (base outcome)
------------------+----------------------------------------------------------------
part_time_work    |
          kidslt6 |  -1.029752   .2192135    -4.70   0.000    -1.459402   -.6001012
          kidsge6 |   .1452962   .0810486     1.79   0.073    -.0135561    .3041485
              age |   -.061935   .0161806    -3.83   0.000    -.0936485   -.0302215
             educ |   .2352844   .0489108     4.81   0.000      .139421    .3311478
            exper |   .0836159   .0155026     5.39   0.000     .0532314    .1140004
         nwifeinc |  -.0191471   .0093588    -2.05   0.041    -.0374899   -.0008043
            _cons |  -1.051627   .9599877    -1.10   0.273    -2.933168    .8299147
------------------+----------------------------------------------------------------
full_time_work    |
          kidslt6 |   -2.04806   .2883306    -7.10   0.000    -2.613177   -1.482942
          kidsge6 |  -.0562924    .089552    -0.63   0.530    -.2318111    .1192262
              age |  -.1267562   .0173295    -7.31   0.000    -.1607214   -.0927911
             educ |   .2225451   .0508362     4.38   0.000     .1229081    .3221822
            exper |   .1554865   .0162169     9.59   0.000      .123702     .187271
         nwifeinc |  -.0218055   .0102905    -2.12   0.034    -.0419746   -.0016364
            _cons |   1.552764   .9850566     1.58   0.115    -.3779109     3.48344
-----------------------------------------------------------------------------------

. estimates store mlogit

. ologit lfstatus kidslt6 kidsge6 age educ exper nwifeinc

Iteration 0:   log likelihood = -809.85106  
Iteration 1:   log likelihood = -686.68524  
Iteration 2:   log likelihood = -685.50088  
Iteration 3:   log likelihood = -685.49686  
Iteration 4:   log likelihood = -685.49686  

Ordered logistic regression                             Number of obs =    753
                                                        LR chi2(6)    = 248.71
                                                        Prob > chi2   = 0.0000
Log likelihood = -685.49686                             Pseudo R2     = 0.1536

------------------------------------------------------------------------------
    lfstatus | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
     kidslt6 |  -1.390614   .1813509    -7.67   0.000    -1.746055   -1.035172
     kidsge6 |  -.0341089   .0623172    -0.55   0.584    -.1562484    .0880307
         age |  -.0916151   .0121459    -7.54   0.000    -.1154207   -.0678096
        educ |    .158401   .0356408     4.44   0.000     .0885464    .2282557
       exper |   .1159833   .0112204    10.34   0.000     .0939917     .137975
    nwifeinc |  -.0153582   .0073408    -2.09   0.036    -.0297459   -.0009705
-------------+----------------------------------------------------------------
       /cut1 |   -1.75244   .7084357                     -3.140949   -.3639319
       /cut2 |  -.3338748   .7054785                     -1.716587    1.048838
------------------------------------------------------------------------------

. estimates store ologit

. lrtest mlogit ologit, force

Likelihood-ratio test
Assumption: ologit nested within mlogit

 LR chi2(6) =  18.28
Prob > chi2 = 0.0056

The model with fewer constraints, more free parameters, fewer degrees of freedom is the simplified and nested model. The model with more constraints, more estimated parameters, greater degrees of freedom is the full model. If there is not a significant difference between two such models, then the simplified model is preferred.

The null hypothesis is formulated such that the simplified (i.e, ologit) model is true, and the likelihood ratio chi-squared test statistic is calculated. If the null hypothesis is rejected, as it is above, then simplification of the model is not justified and the more complex (i.e., mlogit) model is preferred.


See also

Stata manual for mlogit

Stata manual for mlogit post-estimation


CategoryRicottone

Stata/Mlogit (last edited 2025-04-04 02:57:47 by DominicRicottone)