Unit Vector
A unit vector is a normalized vector, that is to say it has a distance of 1.
Contents
Description
A unit vector is a vector with a distance of 1. Any vector can be made into a unit vector, by normalizing it: a⃗/||a⃗||.
R3 space is commonly expressed as having the unit vectors î, ĵ, and k̂ which each have a distance of 1 in the directions of the X, Y, and Z axes respectively.
Note that the dot products of these unit vectors are characterized by:
i⋅i = j⋅j = k⋅k = 1
i⋅j = j⋅k = k⋅i = 0
Note also that the cross products of these unit vectors are characterized by:
i×i = j×j = k×k = 0
i×j = k
j×k = i
k×i = j
j×i = -k
k×j = -i
i×k = -j
