Standard Errors
Standard errors are the standard deviations of estimated coefficients.
Description
In the classical OLS model,, estimated coefficients are:
univariate case:
multivariate case:
Standard errors are the standard deviations of these coefficients.
Classical
Univariate
In the univariate case, standard errors are classically specified as:
Supposing the population Var(ε) is known and is constant, this can be simplified.
Lastly, rewrite the denominator in terms of Var(X).
Var(ε) is unknown, so this term is estimated as:
,
Var(\hat{\epsilon}) = \frac{1}{n-1}\sum_{i=1}n(\hat{\epsilon}_i2)
1 degree of freedom is lost in assuming homoskedasticity of errors, i.e.
k degrees of freedom are lost in assuming independence of errors and k independent variables, which is necessarily 1 in the univariate case, i.e.:
This arrives at estimation as:
Multivariate
The classical multivariate specification is expressed in terms of (b-β), as:
Var(\mathbf{b} | \mathbf{X}) = E\Bigl[(\mathbf{b}-\mathbf{\beta})(\mathbf{b}-\mathbf{\beta})^T \Big| \mathbf{X}\Bigr]
That term is rewritten as (XTX)-1Xu.
Var(\mathbf{b} | \mathbf{X}) = E\Bigl[\bigl((\mathbf{X}T\mathbf{X}){-1}\mathbf{X}T\mathbf{u}\bigr)\bigl((\mathbf{X}T\mathbf{X}){-1}\mathbf{X}T\mathbf{u}\bigr){T} \Big| \mathbf{X}\Bigr] = E\Bigl[(\mathbf{X}T\mathbf{X}){-1}\mathbf{X}T\mathbf{u}\mathbf{u}T\mathbf{X}(\mathbf{X}T\mathbf{X})^{-1} \Big| \mathbf{X}\Bigr]
Var(\mathbf{b} | \mathbf{X}) = (\mathbf{X}T\mathbf{X}){-1}\mathbf{X}T E\bigl[\mathbf{u}\mathbf{u}T\big|\mathbf{X}\bigr]\mathbf{X}(\mathbf{X}T\mathbf{X}){-1}
E[uuT|X] is not a practical matrix to work with. But if homoskedasticity and independence are assumed, i.e.:
E\bigl[\mathbf{u}\mathbf{u}^T\big|\mathbf{X}\bigr] = Var(\mathbf{\beta})\mathbf{I}_n
...then this simplifies to:
Var(\mathbf{b} | \mathbf{X}) = Var(\mathbf{\beta}) (\mathbf{X}T\mathbf{X}){-1}
Var(β) is unknown, so the estimate is:
\hat{Var}(\mathbf{b} | \mathbf{X}) = \frac{1}{1-k} \mathbf{u}T\mathbf{u} (\mathbf{X}T\mathbf{X})^{-1}
Robust
In the presence of heteroskedasticity of errors, the above simplifications cannot apply. In the univariate case, use the original estimator.
This is mostly interesting in the multivariate case, where E[uuT|X] is still not practical. The assumptions made, when incorrect, lead to...
- OLS estimators are not BLUE
- they are unbiased, but no longer most efficient in terms of MSE
- nonlinear GLMs, such as logit, can be biased
- even if the model's estimates are unbiased, statistics derived from those estimates (e.g., conditioned probability distributions) can be biased
Eicker-Huber-White heterskedasticity consistent errors (HCE) assume that errors are still independent but allowed to vary, i.e. Σ = diag(ε1,...εn). Importantly, this is not a function of X, so the standard errors can be estimated as: \hat{Var}(\mathbf{b} | \mathbf{X}) = (\mathbf{X}T\mathbf{X}){-1}\mathbf{X}T \mathbf{\Sigma} \mathbf{X}(\mathbf{X}T\mathbf{X})^{-1} Note however that heterskedasticity consistent errors are not always appropriate. To reiterate, for OLS, classical estimators are not biased even given heteroskedasticity; if the model changes with introduction of robust standard errors, there must be a specification error. Furthermore, heterskedasticity consistent errors are asymptotically unbiased; they can be biased for small