Differences between revisions 6 and 7
Revision 6 as of 2023-10-28 07:04:18
Size: 2049
Comment:
Revision 7 as of 2023-10-28 16:21:41
Size: 1381
Comment:
Deletions are marked like this. Additions are marked like this.
Line 21: Line 21:
Take the generic equation form of a line:

{{attachment:b01.svg}}

Insert the first point into this form.

{{attachment:b02.svg}}

This can be trivially rewritten to solve for ''a'' in terms of ''b'':

{{attachment:b03.svg}}

Insert the second point into the original form.

{{attachment:b04.svg}}

Now additionally insert the solution for ''a'' in terms of ''b''.

{{attachment:b05.svg}}

Expand all terms to produce:

{{attachment:b06.svg}}

This can now be eliminated into:

{{attachment:b07.svg}}

Giving a solution for ''b'':

{{attachment:b08.svg}}

This solution is trivially rewritten as:

{{attachment:b09.svg}}

Expand the formula for correlation as:

{{attachment:b10.svg}}

This can now be eliminated into:

{{attachment:b11.svg}}

Finally, ''b'' can be eloquently written as:
These points, with the generic equation for a line, can [[Econometrics/OrdinaryLeastSquares/UnivariateProof|prove]] that the slope of the regression line is equal to:
Line 69: Line 25:
Giving a generic formula for the regression line: The generic formula for the regression line is:

Ordinary Least Squares

Ordinary Least Squares (OLS) is a linear regression method. It minimizes root mean square errors.


Univariate

The regression line passes through two points:

[ATTACH]

and

[ATTACH]

These points, with the generic equation for a line, can prove that the slope of the regression line is equal to:

[ATTACH]

The generic formula for the regression line is:

[ATTACH]


Linear Model

The linear model can be expressed as:

model1.svg

If these assumptions can be made:

  1. Linearity
  2. Exogeneity

model2.svg

  1. Random sampling
  2. No perfect multicolinearity
  3. Heteroskedasticity

Then OLS is the best linear unbiased estimator (BLUE) for these coefficients.

Using the computation above, the coefficients are estimated to produce:

[ATTACH]

The variance for each coefficient is estimated as:

[ATTACH]

Where R2 is calculated as:

[ATTACH]

Note also that the standard deviation of the population's parameter is unknown, so it's estimated like:

[ATTACH]


CategoryRicottone

Statistics/OrdinaryLeastSquares (last edited 2025-01-10 14:33:38 by DominicRicottone)