Differences between revisions 19 and 20
Revision 19 as of 2024-06-05 22:01:56
Size: 1860
Comment: Rewrite 2
Revision 20 as of 2024-06-05 23:18:46
Size: 2060
Comment: Multivariate
Deletions are marked like this. Additions are marked like this.
Line 38: Line 38:

More conventionally, this is estimated with [[LinearAlgebra|linear algebra]] as:

{{attachment:matrix.svg}}

The proof can be seen [[Econometrics/OrdinaryLeastSquares/MultivariateProof|here]].

Ordinary Least Squares

Ordinary Least Squares (OLS) is a linear regression method. It minimizes root mean square errors.


Univariate

Given one independent variable and one dependent (outcome) variable, the OLS model is specified as:

model.svg

It is estimated as:

estimate.svg

This model describes (1) the mean observation and (2) the marginal changes to the outcome per unit changes in the independent variable.

The proof can be seen here.


Multivariate

Given k independent variables, the OLS model is specified as:

mmodel.svg

It is estimated as:

mestimate.svg

More conventionally, this is estimated with linear algebra as:

matrix.svg

The proof can be seen here.


Estimated Coefficients

If these assumptions can be made:

  1. Linearity
  2. Exogeneity

  3. Random sampling
  4. No perfect multicolinearity
  5. Homoskedasticity

Then OLS is the best linear unbiased estimator (BLUE) for regression coefficients.

The variances for each coefficient are:

homo1.svg

Note that the standard deviation of the population's parameter is unknown, so it's estimated like:

homo2.svg

If the homoskedasticity assumption does not hold, then the estimators for each coefficient are actually:

hetero1.svg

Wherein, for example, r1j is the residual from regressing x1 onto x2, ... xk.

The variances for each coefficient can be estimated with the Eicker-White formula:

hetero2.svg

See Nicolai Kuminoff's video lectures for the derivation of the robust estimators.


CategoryRicottone

Statistics/OrdinaryLeastSquares (last edited 2025-01-10 14:33:38 by DominicRicottone)