Differences between revisions 17 and 18
Revision 17 as of 2024-06-05 14:58:24
Size: 1809
Comment: Simplify language
Revision 18 as of 2024-06-05 21:29:24
Size: 1866
Comment: Rewrite
Deletions are marked like this. Additions are marked like this.
Line 13: Line 13:
The regression line passes through two points: Given one independent variable and one dependent (outcome) variable, the OLS model is specified as:
Line 15: Line 15:
{{attachment:regression1.svg}} {{attachment:model.svg}}
Line 17: Line 17:
and It is estimated as:
Line 19: Line 19:
{{attachment:regression2.svg}} {{attachment:estimate.svg}}
Line 21: Line 21:
It can be [[Econometrics/OrdinaryLeastSquares/UnivariateProof|proven]] that the slope of the regression line is equal to: This model describes (1) the mean observation and (2) the marginal changes to the outcome per unit changes in the independent variable.
Line 23: Line 23:
{{attachment:b12.svg}}

The generic formula for the regression line is:

{{attachment:b13.svg}}
The proof can be seen [[Econometrics/OrdinaryLeastSquares/UnivariateProof|here]].

Ordinary Least Squares

Ordinary Least Squares (OLS) is a linear regression method. It minimizes root mean square errors.


Univariate

Given one independent variable and one dependent (outcome) variable, the OLS model is specified as:

model.svg

It is estimated as:

estimate.svg

This model describes (1) the mean observation and (2) the marginal changes to the outcome per unit changes in the independent variable.

The proof can be seen here.


Multivariate


Linear Model

The linear model can be expressed as:

model1.svg

If these assumptions can be made:

  1. Linearity
  2. Exogeneity

  3. Random sampling
  4. No perfect multicolinearity
  5. Homoskedasticity

Then OLS is the best linear unbiased estimator (BLUE) for these coefficients.

Using the computation above, the coefficients are estimated to produce:

model2.svg

The variances for each coefficient are:

homo1.svg

Note that the standard deviation of the population's parameter is unknown, so it's estimated like:

homo2.svg

If the homoskedasticity assumption does not hold, then the estimators for each coefficient are actually:

hetero1.svg

Wherein, for example, r1j is the residual from regressing x1 onto x2, ... xk.

The variances for each coefficient can be estimated with the Eicker-White formula:

hetero2.svg

See Nicolai Kuminoff's video lectures for the derivation of the robust estimators.


CategoryRicottone

Statistics/OrdinaryLeastSquares (last edited 2025-01-10 14:33:38 by DominicRicottone)