Size: 1809
Comment: Simplify language
|
Size: 1866
Comment: Rewrite
|
Deletions are marked like this. | Additions are marked like this. |
Line 13: | Line 13: |
The regression line passes through two points: | Given one independent variable and one dependent (outcome) variable, the OLS model is specified as: |
Line 15: | Line 15: |
{{attachment:regression1.svg}} | {{attachment:model.svg}} |
Line 17: | Line 17: |
and | It is estimated as: |
Line 19: | Line 19: |
{{attachment:regression2.svg}} | {{attachment:estimate.svg}} |
Line 21: | Line 21: |
It can be [[Econometrics/OrdinaryLeastSquares/UnivariateProof|proven]] that the slope of the regression line is equal to: | This model describes (1) the mean observation and (2) the marginal changes to the outcome per unit changes in the independent variable. |
Line 23: | Line 23: |
{{attachment:b12.svg}} The generic formula for the regression line is: {{attachment:b13.svg}} |
The proof can be seen [[Econometrics/OrdinaryLeastSquares/UnivariateProof|here]]. |
Ordinary Least Squares
Ordinary Least Squares (OLS) is a linear regression method. It minimizes root mean square errors.
Univariate
Given one independent variable and one dependent (outcome) variable, the OLS model is specified as:
It is estimated as:
This model describes (1) the mean observation and (2) the marginal changes to the outcome per unit changes in the independent variable.
The proof can be seen here.
Multivariate
Linear Model
The linear model can be expressed as:
If these assumptions can be made:
- Linearity
- Random sampling
- No perfect multicolinearity
Then OLS is the best linear unbiased estimator (BLUE) for these coefficients.
Using the computation above, the coefficients are estimated to produce:
The variances for each coefficient are:
Note that the standard deviation of the population's parameter is unknown, so it's estimated like:
If the homoskedasticity assumption does not hold, then the estimators for each coefficient are actually:
Wherein, for example, r1j is the residual from regressing x1 onto x2, ... xk.
The variances for each coefficient can be estimated with the Eicker-White formula:
See Nicolai Kuminoff's video lectures for the derivation of the robust estimators.