Differences between revisions 16 and 17
Revision 16 as of 2023-10-28 19:02:09
Size: 1854
Comment:
Revision 17 as of 2024-06-05 14:58:24
Size: 1809
Comment: Simplify language
Deletions are marked like this. Additions are marked like this.
Line 21: Line 21:
These points, with the generic equation for a line, can [[Econometrics/OrdinaryLeastSquares/UnivariateProof|prove]] that the slope of the regression line is equal to: It can be [[Econometrics/OrdinaryLeastSquares/UnivariateProof|proven]] that the slope of the regression line is equal to:

Ordinary Least Squares

Ordinary Least Squares (OLS) is a linear regression method. It minimizes root mean square errors.


Univariate

The regression line passes through two points:

[ATTACH]

and

[ATTACH]

It can be proven that the slope of the regression line is equal to:

[ATTACH]

The generic formula for the regression line is:

[ATTACH]


Multivariate


Linear Model

The linear model can be expressed as:

model1.svg

If these assumptions can be made:

  1. Linearity
  2. Exogeneity

  3. Random sampling
  4. No perfect multicolinearity
  5. Homoskedasticity

Then OLS is the best linear unbiased estimator (BLUE) for these coefficients.

Using the computation above, the coefficients are estimated to produce:

model2.svg

The variances for each coefficient are:

homo1.svg

Note that the standard deviation of the population's parameter is unknown, so it's estimated like:

homo2.svg

If the homoskedasticity assumption does not hold, then the estimators for each coefficient are actually:

hetero1.svg

Wherein, for example, r1j is the residual from regressing x1 onto x2, ... xk.

The variances for each coefficient can be estimated with the Eicker-White formula:

hetero2.svg

See Nicolai Kuminoff's video lectures for the derivation of the robust estimators.


CategoryRicottone

Statistics/OrdinaryLeastSquares (last edited 2025-01-10 14:33:38 by DominicRicottone)