Size: 1730
Comment:
|
Size: 1854
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 77: | Line 77: |
See [[https://www.youtube.com/@kuminoff|Nicolai Kuminoff's]] video lectures for the derivation of the robust estimators. |
Ordinary Least Squares
Ordinary Least Squares (OLS) is a linear regression method. It minimizes root mean square errors.
Univariate
The regression line passes through two points:
and
These points, with the generic equation for a line, can prove that the slope of the regression line is equal to:
The generic formula for the regression line is:
Multivariate
Linear Model
The linear model can be expressed as:
If these assumptions can be made:
- Linearity
- Random sampling
- No perfect multicolinearity
Then OLS is the best linear unbiased estimator (BLUE) for these coefficients.
Using the computation above, the coefficients are estimated to produce:
The variances for each coefficient are:
Note that the standard deviation of the population's parameter is unknown, so it's estimated like:
If the homoskedasticity assumption does not hold, then the estimators for each coefficient are actually:
Wherein, for example, r1j is the residual from regressing x1 onto x2, ... xk.
The variances for each coefficient can be estimated with the Eicker-White formula:
See Nicolai Kuminoff's video lectures for the derivation of the robust estimators.