Differences between revisions 5 and 6
Revision 5 as of 2023-06-07 21:02:53
Size: 1377
Comment:
Revision 6 as of 2025-04-04 01:00:05
Size: 1927
Comment: Standardize
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
= Stata Regress = = Stata regress =
Line 3: Line 3:
The '''`regress`''' command runs a regression model. The '''`regress`''' command fits a [[Statistics/OrdinaryLeastSquares|linear model]].
Line 14: Line 14:
regress dependent independent . webuse auto
(1978 automobile data)

. regress mpg weight displacement

      Source | SS df MS Number of obs = 74
-------------+---------------------------------- F(2, 71) = 66.79
       Model | 1595.40969 2 797.704846 Prob > F = 0.0000
    Residual | 848.049768 71 11.9443629 R-squared = 0.6529
-------------+---------------------------------- Adj R-squared = 0.6432
       Total | 2443.45946 73 33.4720474 Root MSE = 3.4561

------------------------------------------------------------------------------
         mpg | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
      weight | -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement | .0052808 .0098696 0.54 0.594 -.0143986 .0249602
       _cons | 40.08452 2.02011 19.84 0.000 36.05654 44.11251
------------------------------------------------------------------------------
Line 30: Line 48:
== Estimates ==

To store the estimation results, try:

{{{
estimates store example
}}}

To display the estimation results, try:

{{{
estimates table example
estimates table example, b(%10.3f) star
}}}

The '''`star`''' option shows significance.

While coefficients are always displayed by `estimates table`, they can optionally be formatted with the '''`b(%format)`''' option (as above). There are several optional statistics available as well:

 * '''`se`''' or '''`se(%format)`''' for standard errors
 * '''`t`''' or '''`t(%format)`''' for t- or z-statistics
 * '''`p`''' or '''`p(%format)`''' for p-values

----

Line 59: Line 51:
[[https://www.stata.com/manuals/rregresspostestimation.pdf|Stata manual for logistic post-estimation]] [[https://www.stata.com/manuals/rregress.pdf|Stata manual for regress]]

[[https://www.stata.com/manuals/rregresspostestimation.pdf|Stata manual for regress post-estimation]]

Stata regress

The regress command fits a linear model.


Usage

. webuse auto
(1978 automobile data)

. regress mpg weight displacement

      Source |       SS           df       MS      Number of obs   =        74
-------------+----------------------------------   F(2, 71)        =     66.79
       Model |  1595.40969         2  797.704846   Prob > F        =    0.0000
    Residual |  848.049768        71  11.9443629   R-squared       =    0.6529
-------------+----------------------------------   Adj R-squared   =    0.6432
       Total |  2443.45946        73  33.4720474   Root MSE        =    3.4561

------------------------------------------------------------------------------
         mpg | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
      weight |  -.0065671   .0011662    -5.63   0.000    -.0088925   -.0042417
displacement |   .0052808   .0098696     0.54   0.594    -.0143986    .0249602
       _cons |   40.08452    2.02011    19.84   0.000     36.05654    44.11251
------------------------------------------------------------------------------

Factor Variables

To regress on the levels of a variable rather than its numeric value, prefix the variable name with i..

To regress on an interaction of variables, delimit the two variable names with #. Or use ## to indicate a full factorial (both variables and the interactions).

To create an interaction with a continuous variable, prefix them with c..


See also

Stata manual for regress

Stata manual for regress post-estimation


CategoryRicottone

Stata/Regress (last edited 2025-04-04 01:00:05 by DominicRicottone)