Stata ologit

The ologit command fits a ordered logit model.


Usage

In terms of syntax and reading output, ologit is very similar to logit. The most apparent difference is the inclusion of cuts.

. use https://www3.nd.edu/~rwilliam/statafiles/mroz.dta

. gen lfstatus = cond(hours==0, 0, cond(inrange(hours,1,1249), 1, 2))

. label define lfstatus 0 "non-participation" 1 "part-time work" 2 "full-time work"

. label values lfstatus lfstatus

. ologit lfstatus kidslt6 kidsge6 age educ exper nwifeinc

Iteration 0:   log likelihood = -809.85106  
Iteration 1:   log likelihood = -686.68524  
Iteration 2:   log likelihood = -685.50088  
Iteration 3:   log likelihood = -685.49686  
Iteration 4:   log likelihood = -685.49686  

Ordered logistic regression                             Number of obs =    753
                                                        LR chi2(6)    = 248.71
                                                        Prob > chi2   = 0.0000
Log likelihood = -685.49686                             Pseudo R2     = 0.1536

------------------------------------------------------------------------------
    lfstatus | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
     kidslt6 |  -1.390614   .1813509    -7.67   0.000    -1.746055   -1.035172
     kidsge6 |  -.0341089   .0623172    -0.55   0.584    -.1562484    .0880307
         age |  -.0916151   .0121459    -7.54   0.000    -.1154207   -.0678096
        educ |    .158401   .0356408     4.44   0.000     .0885464    .2282557
       exper |   .1159833   .0112204    10.34   0.000     .0939917     .137975
    nwifeinc |  -.0153582   .0073408    -2.09   0.036    -.0297459   -.0009705
-------------+----------------------------------------------------------------
       /cut1 |   -1.75244   .7084357                     -3.140949   -.3639319
       /cut2 |  -.3338748   .7054785                     -1.716587    1.048838
------------------------------------------------------------------------------

The key is to recognize whether ologit or mlogit are more appropriate. Even when there is a natural ordering to the categories, ologit may not be a superior model. See As an example, adapted from https://www.statalist.org/forums/forum/general-stata-discussion/general/1653984-ordinal-or-multinomial-regression?p=1654012#post1654012:


See also

Stata manual for ologit

Stata manual for ologit post-estimation


CategoryRicottone