Stata Numeric Functions

Stata supports these numeric functions in the global scope.


General Purpose

Function Name

Meaning

Example

abs(n)

Absolute value function

ceil(n)

Round up to an integer

comb(n,k)

[[Statistics/Combinations|Combinatorial function

exp(n)

Exponential function: en

expm1(n)

High precision implementation of exp(n)-1

floor(n)

Round down to an integer

int(n)

Round towards 0 to an integer

-5 = int(-5.8)

invlogit(n)

Inverse logit function

ln(n)

Natural log function

logit(n)

Logit function

ln1m(n)

High precision implementation of ln(n-1)

ln1p(n)

High precision implementation of ln(n+1)

round(n,p)

Round to the nearest value for a given precision


Date and Time Functions

Function Name

Meaning

Output Format

Example

dhms(d,h,m,s)

Attach hour, minute, and second data to a date

%tc

dmy(d,m,y)

Calculate a date from a year, month, and day

%td

Cdhms(d,h,m,s)

Attach hour, minute, and second data to a date

%tC

hms(h,m,s)

Calculate a time from an hour, minute, and second

%tc

Chms(h,m,s)

Calculate a time from an hour, minute, and second

%tC

Note that %tc formats ignore leap seconds, while %tC formats do not.


Statistical Functions

Function Name

Meaning

Example

invnormal

Inverse cumulative standard normal distribution

1.959964 = invnormal(1-0.05/2)

normal

Cumulative standard normal distribution

.9750021 = normal(1.96)


Max


Mdy

Convert a month, day, and year into the number of days since the Stata epoch (01jan1960 00:00:00.000).

generate long date = mdy(month, day, year)
format date %td


Mdyhms

Convert a day, month, year, hour, minute, and second into the number of milliseconds since the Stata epoch (01jan1960 00:00:00.000) ignoring leap seconds.

generate double datetime = mdyhms(month, day, year, hour, minute, second)
format date %tc

See also Cmdyhms, which creates returns a number that should instead be formatted as %tC because it does not ignore leap seconds.


Min


Mod


Real


Round


RUniform

runiform(a,b) returns a random number between a and b. If no parameters are specified, the defaults of 0 and 1 are used.

Below is a demonstration for how an SRS sample can be drawn.

set seed 123456
generate double r_sampled = runiform()
sort r_sampled
generate byte sampled = _n <= 100 

The return value is a double; it will be within a + c(epsdouble) and b − c(epsdouble).

By default, runiform uses the 64-bit Mersenne Twister algorithm. Alternate algorithms are available; see set rng.

See also set seed for designing deterministic programs.


Sign


SqRt


String

Alias for strofreal.


StrOfReal


Sum


Trunc


Y

Convert a year into the number of years since the Stata epoch (01jan1960 00:00:00.000).

generate int year = y(year)
format year %ty


Yh

Convert a year and half year into the number of half years since the Stata epoch (01jan1960 00:00:00.000).

generate int halfyears = yh(year, halfyear)
format halfyears %th


Ym

Convert a year and month into the number of months since the Stata epoch (01jan1960 00:00:00.000).

generate int months = y(year, month)
format months %tm


Yq

Convert a year and quarter into the number of years since the Stata epoch (01jan1960 00:00:00.000).

generate int quarters = yq(year, quarter)
format quarters %tq


Yw

Convert a year and week into the number of weeks since the Stata epoch (01jan1960 00:00:00.000).

generate int weeks = yw(year, week)
format weeks %tw


CategoryRicottone