Special Matrices
These special matrices are core concepts to linear algebra.
Contents
Identity Matrix
The identity matrix is a diagonal line of ones in a square matrix of zeros.
Any matrix A multiplied by the (appropriately sized) identity matrix returns matrix A.
julia> using LinearAlgebra julia> Matrix{Int8}(I,3,3) 3×3 Matrix{Int8}: 1 0 0 0 1 0 0 0 1
Permutation Matrices
A permutation matrix is a square matrix of zeros with a one in each row. Multiplying a permutation matrix by some matrix A (PA) results in a row-exchanged A. Multiplying some matrix A by a permutation matrix (AP) results in a column-exhanged A.
julia> P = Matrix{Int8}(I,3,3)[:,[3,2,1]] 3×3 Matrix{Int8}: 0 0 1 0 1 0 1 0 0 julia> A = [1 2 3; 4 5 6; 7 8 9] 3×3 Matrix{Int64}: 1 2 3 4 5 6 7 8 9 julia> P * A 3×3 Matrix{Int64}: 7 8 9 4 5 6 1 2 3 julia> A * P 3×3 Matrix{Int64}: 3 2 1 6 5 4 9 8 7
The transpose permutation matrix is the same as the inverse permutation matrix: PT = P-1.
The transpose permutation matrix multiplied by the permutation matrix is the same as the identity matrix: PTP = I
Counting Permutations
For 3 by 3 matrices, there are 6 possible permutation matrices. They are often denoted based on the rows they exchange, such as P2 3.
┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ │ 1 0 0│ │ 1 0 0│ │ 0 1 0│ │ 0 1 0│ │ 0 0 1│ │ 0 0 1│ │ 0 1 0│ │ 0 0 1│ │ 1 0 0│ │ 0 0 1│ │ 1 0 0│ │ 0 1 0│ │ 0 0 1│ │ 0 1 0│ │ 0 0 1│ │ 1 0 0│ │ 0 1 0│ │ 1 0 0│ └ ┘ └ ┘ └ ┘ └ ┘ └ ┘ └ ┘ (identity matrix) P P (and so on...) 2,3 1,2
For any n by n matrix, there are n! possible permutation matrices.
Upper Triangular Matrices
If a square matrix has only zeros below the diagonal, it is an upper triangular matrix.
Gauss-Jordan elimination results in a row echelon form of A which, if A is square, is also upper triangular.
Gram-Schmidt orthonormalization is characterized as A = QR where R is upper triangular.
Lower Triangular Matrices
If a square matrix has only zeros above the diagonal, it is a lower triangular matrix.
If Gauss-Jordan elimination is continued into backwards elimination, it results in a reduced row echelon form of A. If A is square, it will be both upper and lower triangular.
Diagonal Matrices
A diagonal matrix is a diagonal line of numbers in a square matrix of zeros.
The columns of a diagonal matrix are its eigenvectors, and the numbers in the diagonal are the eigenvalues.