= Survey Weights = '''Survey weights''' account for the [[Statistics/SurveySampling|design of a survey sample]] and [[Statistics/SurveyInference#Non-sampling_Error|non-sampling error]]. <> ---- == Description == The design weight, or base weight, reflects unequal [[Statistics/SurveySampling|probabilities of selection]]. Generally this is simply the inverse of the sampling probability: ''n,,k,,/N'' for all strata ''k''. === Non-Response Adjustments === All real surveys feature [[Statistics/SurveyInference#Non-sampling_Error|non-sampling error]], especially non-response. If non-response is uncorrelated with key metrics, it is negligible. There almost always is some observable [[Statistics/NonResponseBias|non-response bias]], i.e. an attribute that is known for the entire population and is correlated with both a key metric and responsivity. This bias can be corrected with a '''non-response adjustment''' to the survey weights. It is also reasonable to expect that there is ''unobserved'' bias, i.e. an attribute that is not known. A non-response adjustment factor generally moves weight from non-respondents to comparable respondents. If there are no significant attributes that can be used to establish comparability, then the adjustment is a flat multiplier: the total of cases over the count of respondents. (Non-respondents have their weight set to 0.) If there are significant attributes, responsivity can be modeled. There are generally two approaches: * '''weighting class adjustment''': The population (or stratum subpopulation) is partitioned into N-tiles according to the predicted responsivity. Each N-tile then receives a separate flat multiplier as described above. * '''propensity score adjustment''': Every respondent's weight is multiplied by the inverse of the predicted responsivity, while non-respondents have their weight set to 0. General practice is then to re-normalize the weights such that they sum to the same total as before applying the adjustment. Modeling on insignificant or uncorrelated attributes does not introduce bias, but it does inflate variance. === Post-Stratification === Post-stratification is employed in survey weighting for several reasons: * There may be measurable [[Statistics/SurveyInference#Sampling_Error|sampling errors]], such as undercoverage, which can be corrected. * Incorporating auxiliary information, i.e. the known distribution of the population, into survey estimates should increase accuracy. * Post-stratified estimates are consistent. Estimates across surveys will match on e.g. the proportion of women in the population if they are all post-stratified according to the same targets. There are two approaches to this post-stratification: [[TheCalibrationApproachInSurveyTheoryAndPractice|GREG estimation and calibration estimation]]. Calibration is known under a variety of other names: '''raking''', '''iterative proportional fitting''', and '''RIM weighting'''. ---- == Usage == === Weighted Estimators === Survey weights ''w'' are designed such that a population proportion ''μ'' can be calculated using the weighted estimator ''Σ(wx) / Σw''. In the case that all cases have equal weight, [[Statistics/Moments#Description|it is straightforward to show]] that the variance of that estimator is ''w^2^σ^2^''. In any other case, the variance is given by ''Σ(w^2^σ^2^) / (Σw)^2^''. This ratio must then be linearized or simulated to arrive at an approximate variance. [[Calculus/TaylorSeries|Taylor expansion]] is a common strategy for linearization. ---- CategoryRicottone