⇤ ← Revision 1 as of 2025-05-16 20:55:43
Size: 2959
Comment: Initial commit
|
Size: 2897
Comment: Some attachments
|
Deletions are marked like this. | Additions are marked like this. |
Line 14: | Line 14: |
* univariate case: \hat{\beta} = \frac{Cov(X,Y)}{Var(X)} * multivariate case: \mathbf{b} = (\mathbf(X)^T\mathbf(X))^{-1}\mathbf(X)^T\mathbf(y) |
* univariate case: {{attachment:coef1.svg}} * multivariate case: {{attachment:coef2.svg}} |
Line 45: | Line 45: |
1 degree of freedom is lost in assuming homoskedasticity of errors, i.e.: \sum_{i=1}^n\hat{\epsilon}_i = 0 |
1 degree of freedom is lost in assuming homoskedasticity of errors, i.e. {{attachment:homosked.svg}} |
Standard Errors
Standard errors are the standard deviations of estimated coefficients.
Description
In the classical OLS model,, estimated coefficients are:
univariate case:
multivariate case:
Standard errors are the standard deviations of these coefficients.
Classical
Univariate
In the univariate case, standard errors are classically specified as:
Var(\hat(\beta)|X_i) = \frac{\sum_{i=1}n Var((X_i-\bar{X})\hat{\epsilon}_i)}{(\sum_{i=1}n(X_i-\bar{X})2)2}
Supposing the population Var(β) is known, this can be simplified.
Var(\hat{\beta}|X_i) = \frac{Var(\beta)(\sum_{i=1}n(x_i-\bar{X})2)}{(\sum_{i=1}n(X_i-\bar{X})2)2} = \frac{Var(\beta)}{\sum_{i=1}n(X_i-\bar{X})^2}
Lastly, rewrite the denominator in terms of Var(X).
Var(\hat{\beta}|X_i) = \frac{Var(\beta)}{n (\frac{1}{n}\sum_{i=1}n(X_i-\bar{X})2)} = \frac{Var(\beta)}{n Var(X)}
Var(β) is unknown, so this term is estimated as:
\hat{\epsilon}_i = Y_i - \hat{Y}_i
Var(\hat{\epsilon}) = \frac{1}{n-1}\sum_{i=1}n(\hat{\epsilon}_i2)
1 degree of freedom is lost in assuming homoskedasticity of errors, i.e.
k degrees of freedom are lost in assuming independence of errors and k independent variables, which is necessarily 1 in the univariate case, i.e.:
\sum_{i=1}^nX_i\hat{\epsilon}_i = 0
This arrives at estimation as:
\hat{Var}(\hat{\beta}|X_i) = \frac{\frac{1}{n-2}Var(\hat{\epsilon})}{n Var(X)}
Multivariate
The classical multivariate specification is expressed in terms of (b-β), as:
Var(\mathbf{b} | \mathbf{X}) = E\Bigl[(\mathbf{b}-\mathbf{\beta})(\mathbf{b}-\mathbf{\beta})^T \Big| \mathbf{X}\Bigr]
That term is rewritten as (XTX)-1Xu.
Var(\mathbf{b} | \mathbf{X}) = E\Bigl[\bigl((\mathbf{X}T\mathbf{X}){-1}\mathbf{X}T\mathbf{u}\bigr)\bigl((\mathbf{X}T\mathbf{X}){-1}\mathbf{X}T\mathbf{u}\bigr){T} \Big| \mathbf{X}\Bigr] = E\Bigl[(\mathbf{X}T\mathbf{X}){-1}\mathbf{X}T\mathbf{u}\mathbf{u}T\mathbf{X}(\mathbf{X}T\mathbf{X})^{-1} \Big| \mathbf{X}\Bigr]
Var(\mathbf{b} | \mathbf{X}) = (\mathbf{X}T\mathbf{X}){-1}\mathbf{X}T E\bigl[\mathbf{u}\mathbf{u}T\big|\mathbf{X}\bigr]\mathbf{X}(\mathbf{X}T\mathbf{X}){-1}
Practically speaking, E[uuT|X] is never known. But if homoskedasticity and independence are assumed, i.e.:
E\bigl[\mathbf{u}\mathbf{u}^T\big|\mathbf{X}\bigr] = Var(\mathbf{\beta})\mathbf{I}_n
...then this simplifies to:
Var(\mathbf{b} | \mathbf{X}) = Var(\mathbf{\beta}) (\mathbf{X}T\mathbf{X}){-1}
Var(β) is unknown, so the estimate is:
\hat{Var}(\mathbf{b} | \mathbf{X}) = \frac{1}{1-k} \mathbf{u}T\mathbf{u} (\mathbf{X}T\mathbf{X})^{-1}