Differences between revisions 1 and 2
Revision 1 as of 2025-03-03 04:06:50
Size: 1952
Comment: Initial commit
Revision 2 as of 2025-03-03 04:09:09
Size: 1957
Comment: Slight rewrite
Deletions are marked like this. Additions are marked like this.
Line 37: Line 37:
Second, a reformulation for the necessary sample size to achieve a specific margin of error. Second, a reformulation for the necessary sample size to achieve a specific margin of error. The final formula again assumes a 95% confidence level.
Line 45: Line 45:
As an example, again taking a 95% confidence level, this can be used to calculate necessary sample size for a 5% margin of error: As an example, the necessary sample size for a 5% margin of error is given by:

Margin of Error

The margin of error describes the confidence interval about a point estimate due to sampling error.


Description

Simply put, the margin of error is the radius of the confidence interval. The confidence interval is formed by the point estimate plus and minus the margin of error.

Therefore, the margin of error is calculated in terms of standard errors.

This can lead to a misunderstanding that margins of error are a duplicative concept. The important detail is that margins of error are reported for non-overlapping domains, not for variables/estimates. A sample design may be selected to ensure margins of error of 5% for all domains, i.e. each U.S. state.


Formulation

For a given confidence level, the z-score is calculated and plugged into:

moe1.svg

In several fields (survey statistics included), the metrics of interest are Bernoulli-distributed variables. Note that variance is maximized at a proportion of 0.5, giving σ2 = 0.25. Margins of error are usually reported assuming this maximum.

Given the popularity of the 95% confidence level, the z-score is often implicitly substituted with 1.96.

As such, there are two prevalent expression of the formula. First, a shorthand for calculating the margin of error with a 95% confidence level:

moe2.svg

Second, a reformulation for the necessary sample size to achieve a specific margin of error. The final formula again assumes a 95% confidence level.

moe3.svg

moe4.svg

moe5.svg

As an example, the necessary sample size for a 5% margin of error is given by:

moe6.svg


CategoryRicottone

Statistics/MarginOfError (last edited 2025-05-26 21:03:15 by DominicRicottone)