Size: 2482
Comment: Diagonalizability 2
|
Size: 1791
Comment: Diagonalizability
|
Deletions are marked like this. | Additions are marked like this. |
Line 63: | Line 63: |
A [[LinearAlgebra/SpecialMatrices#Diagonal_Matrices|diagonal matrix]] has many useful properties. A '''diagonalizable matrix''' is a ''square'' matrix that can be factored into one. Notating the matrix of the [[LinearAlgebra/EigenvaluesAndEigenvectors|eigenvectors]] of '''''A''''' as '''''S''''', a diagonalizable matrix can be factored as '''''A''' = '''SΛS'''^-1^''. '''''Λ''''' will be the diagonal matrix with the [[LinearAlgebra/EigenvaluesAndEigenvectors|eigenvalues]] of '''''A''''' in the diagonal. In other words, '''''A''''' can be rewritten as a eigennormalized (i.e. transformed by '''''S''''') then un-eigennormalized (i.e. transformed by '''''S'''^-1^'') diagonal matrix '''''Λ'''''. This is useful because '''''A'''^2^ = '''SΛ'''^2^'''S'''^-1^'', and more generally '''''A'''^K^ = '''SΛ'''^K^'''S'''^-1^''. A square matrix that is not diagonalizable is called '''defective'''. |
A [[LinearAlgebra/SpecialMatrices#Diagonal_Matrices|diagonal matrix]] has many useful properties. A '''diagonalizable matrix''' is a ''square'' matrix that can be [[LinearAlgebra/Diagonalization|factored into one]]. |
Matrix Properties
Matrices can be categorized by whether or not they feature certain properties.
Contents
Symmetry
A symmetric matrix is equal to its transpose.
julia> A = [1 2; 2 1] 2×2 Matrix{Int64}: 1 2 2 1 julia> A == A' true
Invertability
A matrix is invertible and non-singular if the determinant is non-zero.
Idempotency
An idempotent matrix can be multiplied by some matrix A any number of times and the first product will continue to be returned. In other words, A2 = A.
For example, the projection matrix P is characterized as H(HTH)-1HT. If this were squared to H(HTH)-1HTH(HTH)-1HT, then per the core principle of inversion (i.e., AA-1 = I), half of the terms would cancel out. P2 = P.
Orthonormality
A matrix with orthonormal columns has several important properties. A matrix A can be orthonormalized into Q.
Orthogonality
An orthogonal matrix is a square matrix with orthonormal columns.
Diagonalizability
A diagonal matrix has many useful properties. A diagonalizable matrix is a square matrix that can be factored into one.