Size: 3263
Comment: Reorg
|
← Revision 9 as of 2025-03-28 03:00:49 ⇥
Size: 4045
Comment: Link
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
'''Matrix multiplication''' is a fundamental operation. |
|
Line 9: | Line 11: |
== Dimensions == To multiply '''a matrix by another matrix''' as '''''AB''' = '''C''''', they must have a common dimension. '''''A''''' must be as wide as '''''B''''' is tall, and the product will be as wide as '''''B''''' and as tall as '''''A'''''. Alternatively: '''''A''''' has shape ''m'' rows by ''n'' columns, and '''''B''''' has shape ''n'' rows by ''p'' columns, so the product '''''C''''' will have ''m'' rows and ''p'' columns. To multiply '''a matrix by a vector''' as '''''A'''x = y'', the vector can be seen as a matrix with ''n'' rows and 1 column. The product will also have 1 column, i.e. be a vector. To multiply '''a vector by a matrix''', the vector must be [[LinearAlgebra/MatrixTransposition|transposed]] so that it has ''n'' columns and 1 row. In other words, the multiplication is as ''x^T^'''A''' = y^T^''. Alternatively, the multiplication is as ''('''A'''^T^x)^T^ = y^T^''. For multiplying vectors, see [[LinearAlgebra/VectorMultiplication|vector multiplication]]. ---- |
|
Line 11: | Line 27: |
Two matrices are multiplied as linear combinations; the '''rows''' of '''''A''''' and the '''columns''' of '''''B'''''. | Matrix multiplication is taking linear combinations of the rows of '''''A''''' according to the columns of '''''B''''', or vice versa. |
Line 13: | Line 29: |
Two matrices can only be multiplied if their shape is compatible; '''''A''''' must be as tall as '''''B''''' is wide. If '''''A''''' has shape ''m'' rows by ''n'' columns, then '''''B''''' must have shape ''p'' rows by ''m'' columns. (The relation between ''n'' and ''p'' does not matter.) Order matters. The multiplication is '''not''' commutative. |
Matrix multiplication is not commutative. |
Matrix Multiplication
Matrix multiplication is a fundamental operation.
Contents
Dimensions
To multiply a matrix by another matrix as AB = C, they must have a common dimension. A must be as wide as B is tall, and the product will be as wide as B and as tall as A. Alternatively: A has shape m rows by n columns, and B has shape n rows by p columns, so the product C will have m rows and p columns.
To multiply a matrix by a vector as Ax = y, the vector can be seen as a matrix with n rows and 1 column. The product will also have 1 column, i.e. be a vector.
To multiply a vector by a matrix, the vector must be transposed so that it has n columns and 1 row. In other words, the multiplication is as xTA = yT. Alternatively, the multiplication is as (ATx)T = yT.
For multiplying vectors, see vector multiplication.
Properties
Matrix multiplication is taking linear combinations of the rows of A according to the columns of B, or vice versa.
Matrix multiplication is not commutative.
julia> A = [1 2; 0 0; 0 0] 3×2 Matrix{Int64}: 1 2 0 0 0 0 julia> B = [1 0 0; 2 0 0] 2×3 Matrix{Int64}: 1 0 0 2 0 0 julia> A * B 3×3 Matrix{Int64}: 5 0 0 0 0 0 0 0 0 julia> B * A 2×2 Matrix{Int64}: 1 2 2 4
Cell-wise Computation
A cell in a matrix is expressed as Aij where i is a row index and j is a column index. Indexing starts at 1.
For C = AB: Cij can be computed as the dot product of row Ai and column Bj.
Referencing the complete solution above:
julia> A[1, :] 2-element Vector{Int64}: 1 2 julia> B[:, 1] 2-element Vector{Int64}: 1 2 julia> using LinearAlgebra julia> dot(A[1, :], B[:, 1]) 5
Column-wise Computation
Column Cj is a linear combination of all columns in A taken according to the column Bj.
Referencing the complete solution above and recall that B1 = [1 2]:
C = 1*A + 2*A 1 1 2 C = 1*[1 0 0] + 2*[2 0 0] 1 C = [1 0 0] + [4 0 0] 1 C = [5 0 0] 1
Row-wise Computation
Row Ci is a linear combination of all rows in B taken according to the row Ai.
Referencing the complete solution above and recall that A1 = [1 2]:
C = 1*B + 2*B 1 1 2 C = 1*[1 0 0] + 2*[2 0 0] 1 C = [1 0 0] + [4 0 0] 1 C = [5 0 0] 1
Block-wise Computation
Matrix multiplication can be evaluated in blocks. Suppose A and B are 20x20 matrices; they can be divided each into 10x10 quadrants.
Using these matrices A and B as the building blocks:
julia> A = [1 2; 3 4] 2×2 Matrix{Int64}: 1 2 3 4 julia> B = [1 0; 0 1] 2×2 Matrix{Int64}: 1 0 0 1
Much larger matrices may be composed of these building blocks.
julia> A_ = [A1 A2; A3 A4] 4×4 Matrix{Int64}: 1 2 1 2 3 4 3 4 1 2 1 2 3 4 3 4 julia> B_ = [B1 B2; B3 B4] 4×4 Matrix{Int64}: 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
The entire product could be computed:
julia> A_ * B_ 4×4 Matrix{Int64}: 2 4 2 4 6 8 6 8 2 4 2 4 6 8 6 8
But if a specific block of the product is of interest, it can be solved like C1 = A1B1 + A2B3.
julia> A1 * B1 + A2 * B3 2×2 Matrix{Int64}: 2 4 6 8