Differences between revisions 8 and 9
Revision 8 as of 2025-03-28 02:55:21
Size: 4007
Comment: Polishing the article
Revision 9 as of 2025-03-28 03:00:49
Size: 4045
Comment: Link
Deletions are marked like this. Additions are marked like this.
Line 17: Line 17:
To multiply '''a vector by a matrix''', the vector must be transposed so that it has ''n'' columns and 1 row. In other words, the multiplication is as ''x^T^'''A''' = y^T^''. Alternatively, the multiplication is as ''('''A'''^T^x)^T^ = y^T^''. To multiply '''a vector by a matrix''', the vector must be [[LinearAlgebra/MatrixTransposition|transposed]] so that it has ''n'' columns and 1 row. In other words, the multiplication is as ''x^T^'''A''' = y^T^''. Alternatively, the multiplication is as ''('''A'''^T^x)^T^ = y^T^''.

Matrix Multiplication

Matrix multiplication is a fundamental operation.


Dimensions

To multiply a matrix by another matrix as AB = C, they must have a common dimension. A must be as wide as B is tall, and the product will be as wide as B and as tall as A. Alternatively: A has shape m rows by n columns, and B has shape n rows by p columns, so the product C will have m rows and p columns.

To multiply a matrix by a vector as Ax = y, the vector can be seen as a matrix with n rows and 1 column. The product will also have 1 column, i.e. be a vector.

To multiply a vector by a matrix, the vector must be transposed so that it has n columns and 1 row. In other words, the multiplication is as xTA = yT. Alternatively, the multiplication is as (ATx)T = yT.

For multiplying vectors, see vector multiplication.


Properties

Matrix multiplication is taking linear combinations of the rows of A according to the columns of B, or vice versa.

Matrix multiplication is not commutative.

julia> A = [1 2; 0 0; 0 0]
3×2 Matrix{Int64}:
 1  2
 0  0
 0  0

julia> B = [1 0 0; 2 0 0]
2×3 Matrix{Int64}:
 1  0  0
 2  0  0

julia> A * B
3×3 Matrix{Int64}:
 5  0  0
 0  0  0
 0  0  0

julia> B * A
2×2 Matrix{Int64}:
 1  2
 2  4


Cell-wise Computation

A cell in a matrix is expressed as Aij where i is a row index and j is a column index. Indexing starts at 1.

For C = AB: Cij can be computed as the dot product of row Ai and column Bj.

Referencing the complete solution above:

julia> A[1, :]
2-element Vector{Int64}:
 1
 2

julia> B[:, 1]
2-element Vector{Int64}:
 1
 2

julia> using LinearAlgebra

julia> dot(A[1, :], B[:, 1])
5


Column-wise Computation

Column Cj is a linear combination of all columns in A taken according to the column Bj.

Referencing the complete solution above and recall that B1 = [1 2]:

C  = 1*A  + 2*A
 1      1      2

C  = 1*[1 0 0] + 2*[2 0 0]
 1

C  = [1 0 0] + [4 0 0]
 1

C  = [5 0 0]
 1


Row-wise Computation

Row Ci is a linear combination of all rows in B taken according to the row Ai.

Referencing the complete solution above and recall that A1 = [1 2]:

C  = 1*B  + 2*B
 1      1      2

C  = 1*[1 0 0] + 2*[2 0 0]
 1

C  = [1 0 0] + [4 0 0]
 1

C  = [5 0 0]
 1


Block-wise Computation

Matrix multiplication can be evaluated in blocks. Suppose A and B are 20x20 matrices; they can be divided each into 10x10 quadrants.

Using these matrices A and B as the building blocks:

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> B = [1 0; 0 1]
2×2 Matrix{Int64}:
 1  0
 0  1

Much larger matrices may be composed of these building blocks.

julia> A_ = [A1 A2; A3 A4]
4×4 Matrix{Int64}:
 1  2  1  2
 3  4  3  4
 1  2  1  2
 3  4  3  4

julia> B_ = [B1 B2; B3 B4]
4×4 Matrix{Int64}:
 1  0  1  0
 0  1  0  1
 1  0  1  0
 0  1  0  1

The entire product could be computed:

julia> A_ * B_
4×4 Matrix{Int64}:
 2  4  2  4
 6  8  6  8
 2  4  2  4
 6  8  6  8

But if a specific block of the product is of interest, it can be solved like C1 = A1B1 + A2B3.

julia> A1 * B1 + A2 * B3
2×2 Matrix{Int64}:
 2  4
 6  8


CategoryRicottone

LinearAlgebra/MatrixMultiplication (last edited 2025-03-28 03:00:49 by DominicRicottone)