= LU Decomposition = '''''LU'' decomposition''' is another approach to [[LinearAlgebra/Elimination|Gauss-Jordan elimination]]. It is generalized as '''''A''' = '''LU'''''. <> ---- == Example == '''''LU''''' decomposition is a strategy for simplifying math with '''''A'''''. {{{ julia> using LinearAlgebra julia> A = [1 2 1; 3 8 1; 0 4 1] 3×3 Matrix{Int64}: 1 2 1 3 8 1 0 4 1 julia> lu(A, NoPivot()) LU{Float64, Matrix{Float64}, Vector{Int64}} L factor: 3×3 Matrix{Float64}: 1.0 0.0 0.0 3.0 1.0 0.0 0.0 2.0 1.0 U factor: 3×3 Matrix{Float64}: 1.0 2.0 1.0 0.0 2.0 -2.0 0.0 0.0 5.0 }}} Note that `NoPivot()` must be specified because [[Julia]] wants to do a more efficient factorization. ---- == Computation of Elimination Matrices == [[LinearAlgebra/Elimination|Gauss-Jordan elimination]] begins with identifying the pivot and transforming this: {{{ ┌ ┐ │ [1] 2 1│ │ 3 8 1│ │ 0 4 1│ └ ┘ }}} ...into this: {{{ ┌ ┐ │ [1] 2 1│ │ 0 2 -2│ │ 0 4 1│ └ ┘ }}} This transformation was ultimately a linear combination of rows: subtracting three of row 1 from row 2. This can be reformulated with matrices. {{{ julia> A = [1 2 1; 3 8 1; 0 4 1] 3×3 Matrix{Int64}: 1 2 1 3 8 1 0 4 1 julia> E2_1 = [1 0 0; -3 1 0; 0 0 1] 3×3 Matrix{Int64}: 1 0 0 -3 1 0 0 0 1 julia> E2_1 * A 3×3 Matrix{Int64}: 1 2 1 0 2 -2 0 4 1 }}} This '''elimination matrix''' is called '''''E''',,2 1,,'' because it eliminated cell (2,1), the '''elimination cell'''. An elimination matrix is always the [[LinearAlgebra/SpecialMatrices#Identity_Matrix|identity matrix]] with the negated multiplier in the elimination cell. The Gauss-Jordan approach continues with subtracting two of row 2 from row 3. Formulated as matrices instead: {{{ julia> E3_2 = [1 0 0; 0 1 0; 0 -2 1] 3×3 Matrix{Int64}: 1 0 0 0 1 0 0 -2 1 julia> E3_2 * E2_1 * A 3×3 Matrix{Int64}: 1 2 1 0 2 -2 0 0 5 }}} ---- == Decomposition as LU == In this specific example, elimination can be written out as ''('''E''',,3 2,,'''E''',,2 1,,)'''A''' = '''U'''''. A preferable form is '''''A''' = '''LU''''', where '''''L''''' takes on the role of all elimination matrices. '''''L''''' may be a [[LinearAlgebra/SpecialMatrices#Lower_Triangular_Matrices|lower triangular matrix]]. In this specific example, '''''L''' = '''E''',,2 1,,^-1^'''E''',,3 2,,^-1^''. See below how '''''E''',,3 2,,'''E''',,2 1,,'' is messier than '''''E''',,2 1,,^-1^'''E''',,3 2,,^-1^'' despite needing to compute [[LinearAlgebra/MatrixInversion|inverses]]: {{{ julia> E3_2 * E2_1 3×3 Matrix{Int64}: 1 0 0 -3 1 0 6 -2 1 julia> convert(Matrix{Int64}, inv(E2_1) * inv(E3_2)) 3×3 Matrix{Int64}: 1 0 0 3 1 0 0 2 1 }}} Furthermore, in this expression, elimination matrices are iteratively appended instead of prepended. ---- CategoryRicottone