Size: 3300
Comment:
|
← Revision 15 as of 2024-01-29 03:13:41 ⇥
Size: 3111
Comment: Factorization
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
= Elimination Matrices = | = LU Decomposition = |
Line 3: | Line 3: |
See [[LinearAlgebra/Elimination]] for a walkthrough of '''elimination'''. This regards the computation of '''elimination matrices''', which are a method of computing elimination. | '''''LU'' decomposition''' is another approach to [[LinearAlgebra/Elimination|Gauss-Jordan elimination]]. It is generalized as '''''A''' = '''LU'''''. <<TableOfContents>> ---- |
Line 7: | Line 11: |
== Introduction == | == Example == |
Line 9: | Line 13: |
Consider the below system of equations: | '''''LU''''' decomposition is a strategy for simplifying math with '''''A'''''. |
Line 12: | Line 16: |
x + 2y + z = 2 3x + 8y + z = 12 4y + z = 2 |
julia> using LinearAlgebra julia> A = [1 2 1; 3 8 1; 0 4 1] 3×3 Matrix{Int64}: 1 2 1 3 8 1 0 4 1 julia> lu(A, NoPivot()) LU{Float64, Matrix{Float64}, Vector{Int64}} L factor: 3×3 Matrix{Float64}: 1.0 0.0 0.0 3.0 1.0 0.0 0.0 2.0 1.0 U factor: 3×3 Matrix{Float64}: 1.0 2.0 1.0 0.0 2.0 -2.0 0.0 0.0 5.0 |
Line 16: | Line 37: |
Note that `NoPivot()` must be specified because [[Julia]] wants to do a more efficient factorization. ---- |
|
Line 19: | Line 44: |
== Formulation == | == Computation of Elimination Matrices == |
Line 21: | Line 46: |
The first step of elimination involves the elimination of the cell at row 2 column 1 ''(henceforward cell '''(2,1)''')''. | [[LinearAlgebra/Elimination|Gauss-Jordan elimination]] begins with identifying the pivot and transforming this: |
Line 24: | Line 49: |
[1] 2 1 [1] 2 1 3 8 1 -> 0 2 -2 0 4 1 0 4 1 |
┌ ┐ │ [1] 2 1│ │ 3 8 1│ │ 0 4 1│ └ ┘ |
Line 29: | Line 56: |
This can instead be formulated in matrices: | ...into this: |
Line 32: | Line 59: |
┌ ┐┌ ┐ ┌ ┐ │ 1 0 0││ 1 2 1│ │ 1 2 1│ │ -3 1 0││ 3 8 1│ = │ 0 2 -2│ │ 0 0 1││ 0 4 1│ │ 0 4 1│ └ ┘└ ┘ └ ┘ |
┌ ┐ │ [1] 2 1│ │ 0 2 -2│ │ 0 4 1│ └ ┘ |
Line 39: | Line 66: |
This elimination matrix is called E,,2 1,, because is eliminated cell (2,1). An elimination matrix is always the identity matrix with the negative of the multiplier in the elimination position. The full elimination process can be formulated as E,,3 2,, (E,,2 1,, A) = U. This is equivalent to (E,,3 2,, E,,2 1,,) A = U. |
This transformation was ultimately a linear combination of rows: subtracting three of row 1 from row 2. This can be reformulated with matrices. |
Line 44: | Line 69: |
[1] 2 1 [1] 2 1 0 [2] -2 -> 0 [2] -2 0 4 1 0 0 5 |
julia> A = [1 2 1; 3 8 1; 0 4 1] 3×3 Matrix{Int64}: 1 2 1 3 8 1 0 4 1 |
Line 48: | Line 75: |
E E A = U 3,2 1,2 ┌ ┐┌ ┐┌ ┐ ┌ ┐ │ 1 0 0││ 1 0 0││ 1 2 1│ │ 1 2 1│ │ 0 1 0││ -3 1 0││ 3 8 1│ = │ 0 2 -2│ │ 0 -2 1││ 0 0 1││ 0 4 1│ │ 0 0 5│ └ ┘└ ┘└ ┘ └ ┘ |
julia> E2_1 = [1 0 0; -3 1 0; 0 0 1] 3×3 Matrix{Int64}: 1 0 0 -3 1 0 0 0 1 julia> E2_1 * A 3×3 Matrix{Int64}: 1 2 1 0 2 -2 0 4 1 |
Line 56: | Line 87: |
This '''elimination matrix''' is called '''''E''',,2 1,,'' because it eliminated cell (2,1), the '''elimination cell'''. An elimination matrix is always the [[LinearAlgebra/SpecialMatrices#Identity_Matrix|identity matrix]] with the negated multiplier in the elimination cell. The Gauss-Jordan approach continues with subtracting two of row 2 from row 3. Formulated as matrices instead: {{{ julia> E3_2 = [1 0 0; 0 1 0; 0 -2 1] 3×3 Matrix{Int64}: 1 0 0 0 1 0 0 -2 1 julia> E3_2 * E2_1 * A 3×3 Matrix{Int64}: 1 2 1 0 2 -2 0 0 5 }}} ---- |
|
Line 59: | Line 110: |
== Factorization == | == Decomposition as LU == |
Line 61: | Line 112: |
It is preferable to refactor (E,,3 2,, E,,2 1,,) A = U into A = L U. L can be trivially solved to be E,,2 1,,^-1^ E,,3 2,,^-1^. Furthermore, because elimination matrices are modifications of the inverse matrix, their inverses are also trivial to solve. Note that these are simply the identity matrix with the (normal, non-negative) multiplier in the elimination position | In this specific example, elimination can be written out as ''('''E''',,3 2,,'''E''',,2 1,,)'''A''' = '''U'''''. A preferable form is '''''A''' = '''LU''''', where '''''L''''' takes on the role of all elimination matrices. '''''L''''' may be a [[LinearAlgebra/SpecialMatrices#Lower_Triangular_Matrices|lower triangular matrix]]. In this specific example, '''''L''' = '''E''',,2 1,,^-1^'''E''',,3 2,,^-1^''. See below how '''''E''',,3 2,,'''E''',,2 1,,'' is messier than '''''E''',,2 1,,^-1^'''E''',,3 2,,^-1^'' despite needing to compute [[LinearAlgebra/MatrixInversion|inverses]]: |
Line 64: | Line 119: |
┌ ┐ -1 │ 1 0 0│ E E = │ 0 1 0│ 2,3 2,3 │ 0 0 1│ └ ┘ ┌ ┐ ┌ ┐ │ 1 0 0│ -1 │ 1 0 0│ │ -3 1 0│ E = │ 0 1 0│ │ 0 0 1│ 2,3 │ 0 0 1│ └ ┘ └ ┘ ┌ ┐ -1 │ 1 0 0│ E = │ 3 1 0│ 2,3 │ 0 0 1│ └ ┘ |
julia> E3_2 * E2_1 3×3 Matrix{Int64}: 1 0 0 -3 1 0 6 -2 1 julia> convert(Matrix{Int64}, inv(E2_1) * inv(E3_2)) 3×3 Matrix{Int64}: 1 0 0 3 1 0 0 2 1 |
Line 81: | Line 132: |
The fundamental reason for factorization is that the singular product of E,,3 2,, E,,2 1,, is messier than that of E,,2 1,,^-1^ E,,3 2,,^-1^ {{{ E E = ? 3,2 2,1 ┌ ┐┌ ┐ ┌ ┐ │ 1 0 0││ 1 0 0│ │ 1 0 0│ │ 0 1 0││ -3 1 0│ = │ -3 1 0│ │ 0 -2 1││ 0 0 1│ │ 6 -2 1│ └ ┘└ ┘ └ ┘ -1 -1 E E = L 2,1 3,2 ┌ ┐┌ ┐ ┌ ┐ │ 1 0 0││ 1 0 0│ │ 1 0 0│ │ 3 1 0││ 0 1 0│ = │ 3 1 0│ │ 0 0 1││ 0 2 1│ │ 0 2 1│ └ ┘└ ┘ └ ┘ }}} In particular, cell (3,1) is a 0 in L but is 6 in E,,3 2,, E,,2 1,,. |
Furthermore, in this expression, elimination matrices are iteratively appended instead of prepended. |
LU Decomposition
LU decomposition is another approach to Gauss-Jordan elimination. It is generalized as A = LU.
Example
LU decomposition is a strategy for simplifying math with A.
julia> using LinearAlgebra julia> A = [1 2 1; 3 8 1; 0 4 1] 3×3 Matrix{Int64}: 1 2 1 3 8 1 0 4 1 julia> lu(A, NoPivot()) LU{Float64, Matrix{Float64}, Vector{Int64}} L factor: 3×3 Matrix{Float64}: 1.0 0.0 0.0 3.0 1.0 0.0 0.0 2.0 1.0 U factor: 3×3 Matrix{Float64}: 1.0 2.0 1.0 0.0 2.0 -2.0 0.0 0.0 5.0
Note that NoPivot() must be specified because Julia wants to do a more efficient factorization.
Computation of Elimination Matrices
Gauss-Jordan elimination begins with identifying the pivot and transforming this:
┌ ┐ │ [1] 2 1│ │ 3 8 1│ │ 0 4 1│ └ ┘
...into this:
┌ ┐ │ [1] 2 1│ │ 0 2 -2│ │ 0 4 1│ └ ┘
This transformation was ultimately a linear combination of rows: subtracting three of row 1 from row 2. This can be reformulated with matrices.
julia> A = [1 2 1; 3 8 1; 0 4 1] 3×3 Matrix{Int64}: 1 2 1 3 8 1 0 4 1 julia> E2_1 = [1 0 0; -3 1 0; 0 0 1] 3×3 Matrix{Int64}: 1 0 0 -3 1 0 0 0 1 julia> E2_1 * A 3×3 Matrix{Int64}: 1 2 1 0 2 -2 0 4 1
This elimination matrix is called E2 1 because it eliminated cell (2,1), the elimination cell. An elimination matrix is always the identity matrix with the negated multiplier in the elimination cell.
The Gauss-Jordan approach continues with subtracting two of row 2 from row 3. Formulated as matrices instead:
julia> E3_2 = [1 0 0; 0 1 0; 0 -2 1] 3×3 Matrix{Int64}: 1 0 0 0 1 0 0 -2 1 julia> E3_2 * E2_1 * A 3×3 Matrix{Int64}: 1 2 1 0 2 -2 0 0 5
Decomposition as LU
In this specific example, elimination can be written out as (E3 2E2 1)A = U.
A preferable form is A = LU, where L takes on the role of all elimination matrices. L may be a lower triangular matrix. In this specific example, L = E2 1-1E3 2-1.
See below how E3 2E2 1 is messier than E2 1-1E3 2-1 despite needing to compute inverses:
julia> E3_2 * E2_1 3×3 Matrix{Int64}: 1 0 0 -3 1 0 6 -2 1 julia> convert(Matrix{Int64}, inv(E2_1) * inv(E3_2)) 3×3 Matrix{Int64}: 1 0 0 3 1 0 0 2 1
Furthermore, in this expression, elimination matrices are iteratively appended instead of prepended.