Derivative

A derivative is an instantaneous rate of change with respect to an input variable.


Rules

The basic rules/identities are:

Rule

Formulation

Defined for...

constants

const.svg

constant factors

constfact.svg

polynomials

polynomial.svg

exponentiation

e.svg

exponentiation (generalized)

exp.svg

a > 0

logarithms

ln.svg

x > 0

logarithms (generalized)

log.svg

x > 0 and a > 0

For trigonometric functions:

Rule

Formulation

Defined for...

sine

sin.svg

cosine

cos.svg

tangent

tan.svg

inverse sine

arcsin.svg

-1 < x < 1

inverse cosine

arccos.svg

-1 < x < 1

inverse tangent

arctan.svg

Properties

Derivatives are linear: given a function defined like f(x) = αg(x) + βh(x), sum.svg.

The product rule states that, given a function defined like f(x) = g(x)h(x), prod.svg. This follows from the total differential; substitute g and h for g(x) and h(x):

f = gh

df = fgdg + fhdh

df/dx = fg(dg/dx) + fh(dh/dx)

And clearly the partial derivatives fg and fh are equal to h and g respectively, giving:

df/dx = h(dg/dx) + g(dh/dx)

Substituting back in the original functions gives the product rule.


CategoryRicottone