Differences between revisions 3 and 4
Revision 3 as of 2025-10-16 19:41:02
Size: 1502
Comment: Properties
Revision 4 as of 2025-10-16 19:47:55
Size: 2017
Comment: Rewrite
Deletions are marked like this. Additions are marked like this.
Line 13: Line 13:
{{attachment:const.svg}} The basic rules/identities are:
Line 15: Line 15:
{{attachment:constfact.svg}} ||'''Rule''' ||'''Formulation''' ||'''Defined for...''' ||
||constants ||{{attachment:const.svg}} || ||
||constant factors ||{{attachment:constfact.svg}} || ||
||polynomials ||{{attachment:polynomial.svg}}|| ||
||exponentiation ||{{attachment:e.svg}} || ||
||exponentiation (generalized)||{{attachment:exp.svg}} ||''a > 0'' ||
||logarithms ||{{attachment:ln.svg}} ||''x > 0'' ||
||logarithms (generalized) ||{{attachment:log.svg}} ||''x > 0'' and ''a > 0''||
Line 17: Line 24:
{{attachment:polynomial.svg}} For [[Calculus/Trigonometry|trigonometric functions]]:
Line 19: Line 26:
{{attachment:e.svg}}

{{attachment:exp.svg}}, for ''a > 0''

{{attachment:ln.svg}}, for ''x > 0''

{{attachment:log.svg}}, for ''x > 0'' and ''a > 0''

See the trigonometric functions' defined [[Calculus/Trigonometry|here]].

{{attachment:sin.svg}}

{{attachment:cos.svg}}

{{attachment:tan.svg}}

{{attachment:arcsin.svg}}, for ''-1 < x < 1''

{{attachment:arccos.svg}}, for ''-1 < x < 1''

{{attachment:arctan.svg}}
||'''Rule''' ||'''Formulation''' ||'''Defined for...'''||
||sine ||{{attachment:sin.svg}} || ||
||cosine ||{{attachment:cos.svg}} || ||
||tangent ||{{attachment:tan.svg}} || ||
||inverse sine ||{{attachment:arcsin.svg}}||''-1 < x < 1'' ||
||inverse cosine ||{{attachment:arccos.svg}}||''-1 < x < 1'' ||
||inverse tangent||{{attachment:arctan.svg}}|| ||
Line 47: Line 40:
The '''product rule''' states that, given a function defined like ''f(x) = g(x)h(x)'', {{attachment:prod.svg}}. This follows from the [[Calculus/Differential|differential]]; substitute ''g'' and ''h'' for ''g(x)'' and ''h(x)'': The '''product rule''' states that, given a function defined like ''f(x) = g(x)h(x)'', {{attachment:prod.svg}}. This follows from the [[Calculus/Differential|total differential]]; substitute ''g'' and ''h'' for ''g(x)'' and ''h(x)'':
Line 61: Line 54:
Because the derivative of a constant is 0, the product rule also proves that ''(αf)' = αf' ''.

Derivative

A derivative is an instantaneous rate of change with respect to an input variable.


Rules

The basic rules/identities are:

Rule

Formulation

Defined for...

constants

const.svg

constant factors

constfact.svg

polynomials

polynomial.svg

exponentiation

e.svg

exponentiation (generalized)

exp.svg

a > 0

logarithms

ln.svg

x > 0

logarithms (generalized)

log.svg

x > 0 and a > 0

For trigonometric functions:

Rule

Formulation

Defined for...

sine

sin.svg

cosine

cos.svg

tangent

tan.svg

inverse sine

arcsin.svg

-1 < x < 1

inverse cosine

arccos.svg

-1 < x < 1

inverse tangent

arctan.svg

Properties

Derivatives are linear: given a function defined like f(x) = αg(x) + βh(x), sum.svg.

The product rule states that, given a function defined like f(x) = g(x)h(x), prod.svg. This follows from the total differential; substitute g and h for g(x) and h(x):

f = gh

df = fgdg + fhdh

df/dx = fg(dg/dx) + fh(dh/dx)

And clearly the partial derivatives fg and fh are equal to h and g respectively, giving:

df/dx = h(dg/dx) + g(dh/dx)

Substituting back in the original functions gives the product rule.


CategoryRicottone

Calculus/Derivative (last edited 2025-11-12 15:15:43 by DominicRicottone)